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Abstract—In this investigation, using an energy (variational) approach, the flutter instability for various
types of elastically restrained uniform cantilevers carrying up to three concentrated masses and subjected
to a follower compressive force, is presented. The effects of transverse shear deformation and rotatory
inertia of the mass of the column and of the positioning of the concentrated masses with or without their
rotational inertia, are also included in the analysis.

In all cases, where the flutter load is obtained from the coincidence of the second and third flexural
cigenfrequencies a discontinuity with a finite jump in this load is possible; the lower value of the flutter load
at this discontinuity is obtained from the coincidence of the first and second eigenfrequencies, while the
upper value of this load is obtained from the coincidence of the second and third eigenfrequencies.
Subsequently, it is found that the flutter load is a sectionally continuous function of certain of the varying
parameters. Finally, the effect of several parameters upon the magnitude of the jump in the flutter load, is
also discussed.

INTRODUCTION

Recently, a considerable amount of work has been published on the problem of elastic stability
of structural systems under the action of nonconservative follower type forces which are of
particular importance in modern engineering practice. Such systems according to Leipholz’ [1]
classification may be nonconservative of the second kind, if their loss of stability occurs
through divergence, or pure nonconservative, if their loss of stability occurs through flutter.
Herrmann and Bungay [2] have shown that the divergence or flutter type instability of the
aforementioned systems depends on the geometric boundary conditions. A further contribution
to this problem has been presented recently by Kounadis [3]; in this investigation it has also
‘been proven that an elastically restrained (or fully fixed) cantilever subjected to a follower
compressive force at its free end loses always its stability through flutter. Accordingly the
corresponding critical (flutter) load can be established by using only the dynamic method.
Kounadis and Katsikadelis [4, 5] have investigated the effect of shear deformation and rotatory
inertia on the flutter instability of an elastically restrained Beck’s column carrying concentrated
masses at one or both ends. Also Kounadis [6], in a more general analysis, has studied the
individual and coupling effects of the foregoing parameters including the influence of the
positioning along the length of the column of several concentrated masses with or without
rotational inertia.

In Refs. [4-6] was also observed that the flutter load may be derived from the coalescing of
the second and third flexural eigenfrequencies; moreover, in studying the effect of various
parameters upon the flutter load the following phenomenon was observed. In some cases where
the flutter load is obtained by the coalescing of the first and second eigenfrequencies, after a
further increase of the load beyond its critical value, the first and second eigenfrequencies
reappear. This usually occurs for a small range of values of the varying parameter at the end of
which the flutter load is obtained by the coincidence of the second and third eigenfrequencies.

The objective of the present investigation based on the kinetic criterion, is to discuss and
clarify the aforementioned phenomenon. To this end the flutter instability of various types of
elastically restrained cantilevers of uniform cross section carrying up to three concentrated
masses and subjected to a follower compressive force of constant magnitude at its tip is
investigated. The effects of transverse shear and rotatory inertia of the mass of the column, of
the positioning of the concentrated masses as well as of their rotational inertia are also included
in this analysis.

The Timoshenko’s shear coefficient is evaluated by using Cowper's (7] formulae. The
governing equations of motion and associated boundary conditions are established by using an
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energy (variational) approach; this is an extension of Hamilton’s stationary principle to
nonconservative problems.

The problem is reduced to a system of two (linear) coupled partial differential equations
involving generalized functions due to the presence of a concentrated mass. Subsequently a
closed form solution is succesfully obtained by using Laplace transforms.

MATHEMATICAL ANALYSIS

Consider the uniform cantilever of length /, flexural rigidity EI, cross-sectional area A and
material density p, shown in Fig. 1. The cantilever is supported on an elastic rotational spring
with stiffness Cr and on an elastic translational spring with stiffness Cy, it carries three
concentrated masses M,, M,, M; with respective rotational inertias J,, J,, Ji, and it is acted
upon by a follower compressive force S, applied at its tip. Throughout this analysis it is
assumed that the masses M,, M; are attached at the elastic support and the free end of the
cantilever, respectively, while the mass M, is located at an arbitrary distance a from the elastic
support. For the sake of a more accurate[6] investigation the effects of transverse shear
deformation and rotatory inertia of the cantilever are also included in this analysis.

According to the kinetic criterion sufficiently small lateral displacements from the equili-
brium position are imposed and the resulting disturbed motion about this position is discussed.
Let y(x, 1) be the total lateral deflection and ¢(x, t) the angle of rotation of the cross section
{due only to bending), where x is the axial coordinate and ¢ the time. For the bending moment
M(x,t) and the shearing force Q(x,!) normal to the deformed axis of the cantilever, the
following expressions are valid

M(x,t)=~ Ely(x, 1)
Q(x, 1) = K'AGly'(x, )= ¢(x, 1)] m

where &’ is Timoshenko's shear coefficient evaluated by means of Cowper’s formulae [7] and G
is the shear modulus; the prime denotes differentiation with respect to x.

Within the scope of the linear stability theory the follower force S may be resolved into a
vertical (conservative) component Scos y'(l,)=S and a horizontal (nonconservative) com-
ponent S sin y'(l, t) = Sy'(i, t). _

Application of the stationary (value) principle of Hamilton for the foregoing noncon-
servative system, as indicated by Levinson [8], implies

[}
89 [(T-UT)dt=0, 8VISy'(,nN]=0 @
L]
where the functionals of the kinetic energy and total potential energy are given by
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Fig. 1. Elastically restrained cantilever carrying three concentrated masses M;, Ms, M; and subjected to a
follower compressive force S.




On the discontinuity of the flutter load for various types of cantilevers m

i
U™ = [ B+ K AG(Y - 471 dx + JCr0, 0 + G0,
1
-5 | syax+ sy aovan ®

5V is the first variation; the dot denotes differentiation with respect to time f.
The aforegoing Hamilton's principle by means of relation (3) and taking into account that

l .
Misa, )+ (e, 0= [| 8(x - )My + Sl x @

yields the following variational equations

(ol +J18(x — &)l ~ k' AG(y'— ) - EIy" =0
[pA + MyS(x - @)]§ — K’ AG(y" - §')+ Sy" =0 0

where 5§ denotes the generalized Dirac function. The resulting boundary conditions are
at x=0

EIy' (0, t) = Cap(0, ) + 140, 1)
K AGLY'(0, t) - $(0, )] = Cry(0, £) + Sy'0, ) + M50, 1)

at x=|

EI’I"(L t) = - JS'I’"(I’ t)
KAGly'(, ) - ¢, )] =-Ms5(, 1) ©

Setting M; = J; =0 eqns (5) and (6) are in agreement with eqns (3) and (4) or Ref. [6].

Equations (5) and (6) describe the perturbed motion around the original position which is
stable (in the sense of Lyapunov’s definition), if the lateral displacements y(x, f), ¥(x, t) remain
for all times sufficiently small for sufficiently small initial perturbations. These variational
equations determine whether or not this is possible. The initial conditions which have led to the
foregoing displacements are not taken into account. This is so, for it is not the transient
response but the steady-state response which determines the stability or instability of the
system; apparently this response depends on the differential eqns (5) and the corresponding
boundary conditions (6). Hence, one may assume solutions corresponding to the steady-state
response of the form

y(x, £) = $(x) e

W(x, £) = §(x) e )]

in which *i" is the imaginary unit;  is the circular frequency of the steady-state motion and
%(x), ¥(x) are the eigenmodes of this vibratory motion.

Note that the modal analysis, on which the present results depend, presupposes that the
corresponding eigenmodes are complete. If this is so it has not yet been proven to the
knowledge of the authors.

Introduction of the nondimensionalized quantities

£=5a=% v@= wp-s0
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and substitution of relations (7) into eqns (5) and (6) imply

s{Y"(®) + k{1 + Mzd(6 - DY (§) - ¥(§) =0 }

{sk*[A72+ L8(£ - @)] - PY(E) + W) +PY'(£) =0 ®)
and
at £=0: ¥'(0) = Cr¥(0); sY'(0) = ¥(0) + % Y(0)
at £=1: W(1)=skTou(D); Y'(1) = ¥(1) + ski* M Y (1) ] ©)
where
k= %zz; k= ﬂ_s_z (10)
Subsequently, following the same solution procedure given in Ref. [6] it follows that
Y(©) = oY)+ e Y'0) + H(E - DMLY @KFilé - &) — ki*Fy'(¢ - )
~ k' W (@) FiE - &)
V(E) = &) Y(O)+ 0D Y'0)+ ks*H(E - DM, Y (@)F}(¢ - &)
— sh¥(@)(k*Fy€ - &) + F'p(£ - @) (1n

where the functions ¢i(£), ¢x(£), @x(€), @«(€) are given[6] in the Appendix; H is the Heaviside
function; k* is given by

YA
4 __Sv -—
k== (2A’k'(1+v) 1)' 12)

Application of the boundary conditions (9) by virtue of eqns (11) leads to a homogeneous
algebraic system of four equations with respect to Y(0), Y(a), ¥(0), ¥(a). For a nontrivial
solution the determinant of this system must vanish yielding the frequency equation, which is a
transcendental equation of the form

F@, 5k, A% v, Cr, Cr M, J, & =0, (i=1,2,3). (13)

The nondimensionalized eigenfrequencies ()* of the free flexural vibrations are established
as functions of the nondimensionalized compressive follower force § and the dimensionless
parameters k', A2, v, Cg, Cr, M\, My, Mi, Jy, I, J3, &. The critical loads are obtained by solving
eqn (13) on a digital computer using a numerical scheme based on step increasing the magnitude
of the follower compressive force, whereas the other parameters are kept constant. It should be
noted that either for M;— (implying y(1)-»0) or for J; - (implying y'(1)—0) the column
loses its stability through divergence. Excluding the last two cases the column is associated
with a flutter type instability (oscillations with increasing amplitude). The respective critical
(flutter) load corresponds to that magnitude of the compressive force § for which the first
coincidence of two consecutive eigenfrequencies occurs.

Next, four particular cases are considered in which the coupling effect of at least three
parameters is discussed.
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Case |

This case corresponds to a partially fixed Timoshenko Beck’s column carrying two concen-
trated masses, one placed at the support and the other at its tip. The Timoshenko’s shear
coefficient k' is equal to 0.186 and corresponds to a thin I-section with #/d = 1/10, t,/d = 1/20,
b=h=d, »=030[7]. The respective frequency equation is established by setting into eqn (13)
CR— 1, C‘r"’w Mz—fz‘o M; 0.5, }3- I, k' =0.186, A =30, »x0.30; M; is arbitrary,
while f. is the varying parameter.

Case 2

This case corresponds to a partially fixed Timoshenko-Beck’s column carrying only one
mass placed at its support. Therefore, by setting M, = J; =0 into the frequency equation of the
previous case, one may obtain the corresponding equation of case 2.

Case 3
This case results from the preceding one by neglecting the effect of transverse shear
deformation (k' > ) and rotatory inertia.

Case 4

This case corresponds to a fully fixed Beck's column carrying a concentrated mass
placed at a distance & The respective frequency equation is derived from eqn (13) by
setting C’r"‘*w CR—WO Mz—-]z—os k' =, A2 -0, M;-—J;-—O

NUMERICALRESULTS AND DISCUSSION

Solving numerically the frequency equation corresponding to each of the aforementioned
cases, one may determine the respective flutter load; this is established as function of the
varying parameter Ji (cases 1-3) or of the varying position & of a mass My = J,=0.5 (case 4).
The obtained solutions are presented in a graphical form.

From Figs. 2(a-f) corresponding to case 1, one can see the relationship between the follower
compressive load § and the first three flexural eigenfrequencies (i(i =1, 2, 3) for six different
values of the rotational intertia J, of an arbitrary mass M, placed at the support of the cantilever.
More specifically in Fig. 2(a) (J; = 1.90) it is shown that the first and second flexural eigen-
frequencies coalesce at point A to which corresponds the lowest flutter load §r =4.96. For
higher values of the load the two first flexural eigenfrequencies disappear. Moreover, it is
observed that to each value of the load § corresponds only one point of the curve § vs {3
(single-valued function). As the value of J; increases to J; = 1.92 (Fig. 2b) it is observed that the
single valuedness of the function § vs {); is destroyed for a small (finite) range of § values
between point B (local minimum) and C (local maximum). For a further increase in the J, value
to J,=2.00 (Fig. 2c) the foregomg range of § values between points B and C increases.
Moreover the flutter load increases as J; increases. It is also observed that as J; increases to
2.00457 points A and B coincide (Fig. 2d). Furthermore, the first flutter load which increases
with increasing J, values, has attained its maximum value (§¢ = 6.13). Note that a second flutter
load (3F = 6.93) corresponds to point C, It, thus, seems that between these two flutter loads
there exists a post-critical stable region, because of the reappearence of the first two eigen-
frequencnes in the aforementioned region. From Fig. 2e, it is worth noticing that a further
increase in the J, value vields a flutter load §- =6.90 derived from the coincidence of the
second and third eigenfrequencies corresponding to point C. This phenomenon continues to
exist for higher values of J; with a continuous (slight) decrease of the flutter load (Fig. 2(f) and
Fig. 3 for J,>2.00457). Thus, for J,=2.00457" the flutter load is equal to 6.13 while for
J; =2.00457* the flutter load becomes equal to 6.93 and therefore the corresponding finite jump
is equal to 0.80.

In conclusion on the basis of the aforegoing observations one may establish the effect of J,
upon the (first) flutter load (Fig 3). Clearly from Figs. 2 and 3 one may see that: (a) For
J, <2.00457 the flutter load is derived from the coincidence of the first and second eigen-
frequencies, and it increases with increasing values of Ji. (b) For J, > 2.00457 the flutter load i is
derived from the coincidence of the second and third eigenfrequencies, and it decreases with
increasing values of J;, approaching asymptotically the value of §r=4.69 as J;—>x. (c) for
J; =2.00457 there is a discontinuity in the flutter load whose jump corresponds to an increase of
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Fig. 2. Relationship between the dimensionless load § and the first three eigenfrequencies for a partially fixed
{C = l)cantilever carrying two concentrated masses (M, = arbitr., J; = 1.90, 1.92,2.00,2.00457,2.01, 2.10 and
M3 = 0.5, ]3 = 1.0).

the flutter load by about 13%. (d) There is only one jump in the flutter load function as J; varies
from zero to infinity. Consequently the flutter load is a sectionally (piece-wise) continuous

function of J,.

A similar jump phenomenon in the flutter load function vs J; has been also observed in case
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Fig. 3. Blutter load 37 vs moment of inertia J, of an arbitrary concentrated mass M placed at the support of
a partially fixed (Cy = 1) cantilever carrying also a concentrated mass M, at the tip.
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Fig. 5. Flutter load § vs moment of inertia Jyof anarbitrary concentrated mass M, at the support of a partially
fixed (Cr = 1) cantilever.

2, where there is no attached mass at the free end of the cantilever. The response stages shown
in Fig. 2(a-f) appear also in this case. Figure 4 incorporates the 5 first stages of case 2. More
specifically in this case at J, = 0.08974" the flutter load is equal to 19.29, while at J, = 0.08974*
the flutter load becomes 20.30, Namely, this jump is equal to 0.74 and implies an increase of the
flutter load by about 3.8%. The aforegoing observations a-d of case 1 are also valid. Figure 5
shows the dependence of the sectionally continuous flutter load function upon the varying
parameter J,. This Figure appears also in Ref. [4] but without the flutter jump details.

Similar results hold also for case 3, resulting from the previous case by neglecting the effect
of transverse shear deformation and rotatory inertia. In this case, as shown in Fig. 6, the jump
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Fig. 6. Flutter load 57 vs moment of inertia J; of an arbitrary concentrated mass M, at the support of a partially
(Cr = 1) fixed cantilever neglecting the transverse shear and rotatory inertia effect.
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Fig. 7. Flutter load §r vs the position & of a congentrated mass M, (M; = J; = 0.5) of a fully fixed cantilever.

is more pronounced implying an increase in the flutter load by about 10.6%. This means that the
presence of these parameters decreases the jump of the flutter load.

Finally, case 4 is associated with all characteristic response stages of the first case which are
as indicated previously typical for all cases. In this case, as shown from Fig. 7 a tremendous
jump in the flutter load is observed implying an increase in this load by about 300%. Comparing
this jump with those corresponding to the previous cases it is clear that the elasticity of the
support decreases the magnitude of discontinuity in the flutter load.

It should be mentioned that Figs. 6 and 7 appear also in reference[6] but without the flutter
jump details.

Note also that a considerable jump has been observed in the flutter load function vs the
magnitude of a concentrated mass M placed at the support of a Beck’s column with Cr =1 and
Cr-[6]. If the transverse shear effect is included in the analysis the aforegoing jump
decreases appreciably.

In view of the above development it is worth noticing that the discontinuity in the flutter
load is always associated with the derivation of the flutter load by the coincidence of the second
and third eigenfrequencies. Moreover, this discontinuity is a result of the combined effect of at
least three of the parameters: Cr, Cr, M, J, &.

Finally, it should be mentioned that the change in flutter mode due to the change in some
mass parameter is not uncommon on flutter instability problems. For instance in Ref. [9] the
change in mass ratio resulted in sudden jumps in the critical speed of flow. In this reference it
was also shown that damping may play a significant role on the critical load.

CONCLUSIONS
From this investigation one can draw the following important conclusions:
1. A thorough study of cases where the flutter load is obtained through the coincidence of
the second and third eigenfrequencies is presented.
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2. This occurs as a result of the coupling effect of at least three parameters.

3. In all these cases a discontinuity with a finite jump in the flutter load occurs for a certain
combination of the values of the parameters.

4. In every discontinuity the lower value of the flutter load function is obtained through the
coincidence of the first and second eigenfrequencies, while the higher value of this load is
obtained through the coincidence of the second and third eigenfrequencies.

5. From all cases considered, it is clear that the flutter load is a sectionally continuous
function.

6. A little before this discontinuity there exists a small post-critical stable region between
the first (obtained through the coincidence of the two first eigenfrequencies) and second
(obtained through the coincidence of the second and third eigenfrequencies) flutter load, due to
the reappearence of the two first eigenfrequencies.
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APPENDIX
The expressions of the functions ¢i(£), :8), g3(£), o£) are given as below

o= Fio)- (k*+ S5 ) o+ (k=D
odé)= F'(6)+CaF3(6)
A0 4
o) = [ktF0 - T2 Frin =G ((1+)Puor b o))

od£) = [FHO+ k' FY& + CalF() +k F®)]ls

in which
=e’cosh £+ cos ef, _esinh ff~sinef
Fip=SSREES mo= e
¢2=§;+,/%‘+k‘; ;’=-%2+,/%f+k‘
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